Рассчитать высоту треугольника со сторонами 122, 121 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 121 + 41}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-122)(142-121)(142-41)}}{121}\normalsize = 40.5671156}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-122)(142-121)(142-41)}}{122}\normalsize = 40.2345983}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-122)(142-121)(142-41)}}{41}\normalsize = 119.722463}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 121 и 41 равна 40.5671156
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 121 и 41 равна 40.2345983
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 121 и 41 равна 119.722463
Ссылка на результат
?n1=122&n2=121&n3=41
Найти высоту треугольника со сторонами 106, 95 и 92
Найти высоту треугольника со сторонами 114, 74 и 61
Найти высоту треугольника со сторонами 123, 91 и 67
Найти высоту треугольника со сторонами 87, 87 и 65
Найти высоту треугольника со сторонами 114, 107 и 50
Найти высоту треугольника со сторонами 138, 108 и 97
Найти высоту треугольника со сторонами 114, 74 и 61
Найти высоту треугольника со сторонами 123, 91 и 67
Найти высоту треугольника со сторонами 87, 87 и 65
Найти высоту треугольника со сторонами 114, 107 и 50
Найти высоту треугольника со сторонами 138, 108 и 97