Рассчитать высоту треугольника со сторонами 122, 71 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 71 + 66}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-122)(129.5-71)(129.5-66)}}{71}\normalsize = 53.5059351}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-122)(129.5-71)(129.5-66)}}{122}\normalsize = 31.1386999}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-122)(129.5-71)(129.5-66)}}{66}\normalsize = 57.559415}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 71 и 66 равна 53.5059351
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 71 и 66 равна 31.1386999
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 71 и 66 равна 57.559415
Ссылка на результат
?n1=122&n2=71&n3=66
Найти высоту треугольника со сторонами 121, 115 и 84
Найти высоту треугольника со сторонами 98, 96 и 4
Найти высоту треугольника со сторонами 105, 79 и 51
Найти высоту треугольника со сторонами 149, 146 и 121
Найти высоту треугольника со сторонами 135, 123 и 109
Найти высоту треугольника со сторонами 104, 101 и 60
Найти высоту треугольника со сторонами 98, 96 и 4
Найти высоту треугольника со сторонами 105, 79 и 51
Найти высоту треугольника со сторонами 149, 146 и 121
Найти высоту треугольника со сторонами 135, 123 и 109
Найти высоту треугольника со сторонами 104, 101 и 60