Рассчитать высоту треугольника со сторонами 122, 76 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 76 + 68}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-122)(133-76)(133-68)}}{76}\normalsize = 61.2678545}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-122)(133-76)(133-68)}}{122}\normalsize = 38.1668602}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-122)(133-76)(133-68)}}{68}\normalsize = 68.4758374}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 76 и 68 равна 61.2678545
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 76 и 68 равна 38.1668602
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 76 и 68 равна 68.4758374
Ссылка на результат
?n1=122&n2=76&n3=68
Найти высоту треугольника со сторонами 119, 81 и 65
Найти высоту треугольника со сторонами 68, 58 и 17
Найти высоту треугольника со сторонами 117, 81 и 43
Найти высоту треугольника со сторонами 95, 74 и 66
Найти высоту треугольника со сторонами 92, 89 и 73
Найти высоту треугольника со сторонами 132, 115 и 40
Найти высоту треугольника со сторонами 68, 58 и 17
Найти высоту треугольника со сторонами 117, 81 и 43
Найти высоту треугольника со сторонами 95, 74 и 66
Найти высоту треугольника со сторонами 92, 89 и 73
Найти высоту треугольника со сторонами 132, 115 и 40