Рассчитать высоту треугольника со сторонами 122, 79 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 79 + 63}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-122)(132-79)(132-63)}}{79}\normalsize = 55.6227364}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-122)(132-79)(132-63)}}{122}\normalsize = 36.0180014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-122)(132-79)(132-63)}}{63}\normalsize = 69.7491456}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 79 и 63 равна 55.6227364
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 79 и 63 равна 36.0180014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 79 и 63 равна 69.7491456
Ссылка на результат
?n1=122&n2=79&n3=63
Найти высоту треугольника со сторонами 79, 53 и 45
Найти высоту треугольника со сторонами 130, 102 и 80
Найти высоту треугольника со сторонами 82, 75 и 75
Найти высоту треугольника со сторонами 33, 24 и 19
Найти высоту треугольника со сторонами 140, 122 и 83
Найти высоту треугольника со сторонами 110, 106 и 93
Найти высоту треугольника со сторонами 130, 102 и 80
Найти высоту треугольника со сторонами 82, 75 и 75
Найти высоту треугольника со сторонами 33, 24 и 19
Найти высоту треугольника со сторонами 140, 122 и 83
Найти высоту треугольника со сторонами 110, 106 и 93