Рассчитать высоту треугольника со сторонами 122, 82 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 82 + 42}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-122)(123-82)(123-42)}}{82}\normalsize = 15.5884573}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-122)(123-82)(123-42)}}{122}\normalsize = 10.4774877}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-122)(123-82)(123-42)}}{42}\normalsize = 30.434607}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 82 и 42 равна 15.5884573
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 82 и 42 равна 10.4774877
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 82 и 42 равна 30.434607
Ссылка на результат
?n1=122&n2=82&n3=42
Найти высоту треугольника со сторонами 92, 58 и 51
Найти высоту треугольника со сторонами 75, 70 и 20
Найти высоту треугольника со сторонами 82, 78 и 9
Найти высоту треугольника со сторонами 92, 67 и 26
Найти высоту треугольника со сторонами 121, 80 и 65
Найти высоту треугольника со сторонами 149, 142 и 81
Найти высоту треугольника со сторонами 75, 70 и 20
Найти высоту треугольника со сторонами 82, 78 и 9
Найти высоту треугольника со сторонами 92, 67 и 26
Найти высоту треугольника со сторонами 121, 80 и 65
Найти высоту треугольника со сторонами 149, 142 и 81