Рассчитать высоту треугольника со сторонами 122, 82 и 77

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 82 + 77}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-122)(140.5-82)(140.5-77)}}{82}\normalsize = 75.7887886}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-122)(140.5-82)(140.5-77)}}{122}\normalsize = 50.9400054}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-122)(140.5-82)(140.5-77)}}{77}\normalsize = 80.7101385}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 82 и 77 равна 75.7887886
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 82 и 77 равна 50.9400054
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 82 и 77 равна 80.7101385
Ссылка на результат
?n1=122&n2=82&n3=77