Рассчитать высоту треугольника со сторонами 122, 85 и 41

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 85 + 41}{2}} \normalsize = 124}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124(124-122)(124-85)(124-41)}}{85}\normalsize = 21.0818277}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124(124-122)(124-85)(124-41)}}{122}\normalsize = 14.6881587}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124(124-122)(124-85)(124-41)}}{41}\normalsize = 43.7062282}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 85 и 41 равна 21.0818277
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 85 и 41 равна 14.6881587
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 85 и 41 равна 43.7062282
Ссылка на результат
?n1=122&n2=85&n3=41