Рассчитать высоту треугольника со сторонами 122, 85 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 85 + 54}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-122)(130.5-85)(130.5-54)}}{85}\normalsize = 46.2340783}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-122)(130.5-85)(130.5-54)}}{122}\normalsize = 32.2122677}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-122)(130.5-85)(130.5-54)}}{54}\normalsize = 72.7758641}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 85 и 54 равна 46.2340783
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 85 и 54 равна 32.2122677
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 85 и 54 равна 72.7758641
Ссылка на результат
?n1=122&n2=85&n3=54
Найти высоту треугольника со сторонами 50, 38 и 31
Найти высоту треугольника со сторонами 70, 59 и 29
Найти высоту треугольника со сторонами 130, 123 и 32
Найти высоту треугольника со сторонами 42, 30 и 23
Найти высоту треугольника со сторонами 110, 94 и 17
Найти высоту треугольника со сторонами 92, 90 и 16
Найти высоту треугольника со сторонами 70, 59 и 29
Найти высоту треугольника со сторонами 130, 123 и 32
Найти высоту треугольника со сторонами 42, 30 и 23
Найти высоту треугольника со сторонами 110, 94 и 17
Найти высоту треугольника со сторонами 92, 90 и 16