Рассчитать высоту треугольника со сторонами 122, 87 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 87 + 63}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-122)(136-87)(136-63)}}{87}\normalsize = 59.993429}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-122)(136-87)(136-63)}}{122}\normalsize = 42.7821994}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-122)(136-87)(136-63)}}{63}\normalsize = 82.8480686}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 87 и 63 равна 59.993429
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 87 и 63 равна 42.7821994
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 87 и 63 равна 82.8480686
Ссылка на результат
?n1=122&n2=87&n3=63
Найти высоту треугольника со сторонами 81, 81 и 53
Найти высоту треугольника со сторонами 69, 63 и 23
Найти высоту треугольника со сторонами 48, 40 и 38
Найти высоту треугольника со сторонами 147, 143 и 11
Найти высоту треугольника со сторонами 140, 117 и 78
Найти высоту треугольника со сторонами 90, 77 и 68
Найти высоту треугольника со сторонами 69, 63 и 23
Найти высоту треугольника со сторонами 48, 40 и 38
Найти высоту треугольника со сторонами 147, 143 и 11
Найти высоту треугольника со сторонами 140, 117 и 78
Найти высоту треугольника со сторонами 90, 77 и 68