Рассчитать высоту треугольника со сторонами 122, 89 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 89 + 41}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-122)(126-89)(126-41)}}{89}\normalsize = 28.2921259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-122)(126-89)(126-41)}}{122}\normalsize = 20.6393378}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-122)(126-89)(126-41)}}{41}\normalsize = 61.4146148}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 89 и 41 равна 28.2921259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 89 и 41 равна 20.6393378
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 89 и 41 равна 61.4146148
Ссылка на результат
?n1=122&n2=89&n3=41
Найти высоту треугольника со сторонами 108, 72 и 44
Найти высоту треугольника со сторонами 65, 52 и 38
Найти высоту треугольника со сторонами 91, 78 и 50
Найти высоту треугольника со сторонами 78, 59 и 52
Найти высоту треугольника со сторонами 127, 113 и 15
Найти высоту треугольника со сторонами 66, 61 и 45
Найти высоту треугольника со сторонами 65, 52 и 38
Найти высоту треугольника со сторонами 91, 78 и 50
Найти высоту треугольника со сторонами 78, 59 и 52
Найти высоту треугольника со сторонами 127, 113 и 15
Найти высоту треугольника со сторонами 66, 61 и 45