Рассчитать высоту треугольника со сторонами 122, 89 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 89 + 84}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-122)(147.5-89)(147.5-84)}}{89}\normalsize = 83.9983751}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-122)(147.5-89)(147.5-84)}}{122}\normalsize = 61.2775032}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-122)(147.5-89)(147.5-84)}}{84}\normalsize = 88.9982784}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 89 и 84 равна 83.9983751
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 89 и 84 равна 61.2775032
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 89 и 84 равна 88.9982784
Ссылка на результат
?n1=122&n2=89&n3=84
Найти высоту треугольника со сторонами 150, 99 и 81
Найти высоту треугольника со сторонами 137, 135 и 135
Найти высоту треугольника со сторонами 74, 61 и 53
Найти высоту треугольника со сторонами 71, 57 и 55
Найти высоту треугольника со сторонами 133, 132 и 32
Найти высоту треугольника со сторонами 88, 76 и 54
Найти высоту треугольника со сторонами 137, 135 и 135
Найти высоту треугольника со сторонами 74, 61 и 53
Найти высоту треугольника со сторонами 71, 57 и 55
Найти высоту треугольника со сторонами 133, 132 и 32
Найти высоту треугольника со сторонами 88, 76 и 54