Рассчитать высоту треугольника со сторонами 122, 91 и 40

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 91 + 40}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-122)(126.5-91)(126.5-40)}}{91}\normalsize = 29.0577748}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-122)(126.5-91)(126.5-40)}}{122}\normalsize = 21.6742418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-122)(126.5-91)(126.5-40)}}{40}\normalsize = 66.1064376}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 91 и 40 равна 29.0577748
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 91 и 40 равна 21.6742418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 91 и 40 равна 66.1064376
Ссылка на результат
?n1=122&n2=91&n3=40