Рассчитать высоту треугольника со сторонами 122, 93 и 58

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 93 + 58}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-122)(136.5-93)(136.5-58)}}{93}\normalsize = 55.90837}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-122)(136.5-93)(136.5-58)}}{122}\normalsize = 42.6186755}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-122)(136.5-93)(136.5-58)}}{58}\normalsize = 89.6461795}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 93 и 58 равна 55.90837
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 93 и 58 равна 42.6186755
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 93 и 58 равна 89.6461795
Ссылка на результат
?n1=122&n2=93&n3=58