Рассчитать высоту треугольника со сторонами 122, 99 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 99 + 93}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-122)(157-99)(157-93)}}{99}\normalsize = 91.2394447}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-122)(157-99)(157-93)}}{122}\normalsize = 74.0385657}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-122)(157-99)(157-93)}}{93}\normalsize = 97.1258604}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 99 и 93 равна 91.2394447
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 99 и 93 равна 74.0385657
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 99 и 93 равна 97.1258604
Ссылка на результат
?n1=122&n2=99&n3=93
Найти высоту треугольника со сторонами 34, 25 и 17
Найти высоту треугольника со сторонами 131, 119 и 31
Найти высоту треугольника со сторонами 83, 63 и 52
Найти высоту треугольника со сторонами 115, 80 и 68
Найти высоту треугольника со сторонами 79, 72 и 67
Найти высоту треугольника со сторонами 128, 103 и 78
Найти высоту треугольника со сторонами 131, 119 и 31
Найти высоту треугольника со сторонами 83, 63 и 52
Найти высоту треугольника со сторонами 115, 80 и 68
Найти высоту треугольника со сторонами 79, 72 и 67
Найти высоту треугольника со сторонами 128, 103 и 78