Рассчитать высоту треугольника со сторонами 123, 100 и 56

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 100 + 56}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-123)(139.5-100)(139.5-56)}}{100}\normalsize = 55.1062499}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-123)(139.5-100)(139.5-56)}}{123}\normalsize = 44.8018292}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-123)(139.5-100)(139.5-56)}}{56}\normalsize = 98.4040176}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 100 и 56 равна 55.1062499
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 100 и 56 равна 44.8018292
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 100 и 56 равна 98.4040176
Ссылка на результат
?n1=123&n2=100&n3=56