Рассчитать высоту треугольника со сторонами 123, 103 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 103 + 23}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-123)(124.5-103)(124.5-23)}}{103}\normalsize = 12.3958219}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-123)(124.5-103)(124.5-23)}}{123}\normalsize = 10.3802411}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-123)(124.5-103)(124.5-23)}}{23}\normalsize = 55.5117241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 103 и 23 равна 12.3958219
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 103 и 23 равна 10.3802411
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 103 и 23 равна 55.5117241
Ссылка на результат
?n1=123&n2=103&n3=23
Найти высоту треугольника со сторонами 113, 101 и 59
Найти высоту треугольника со сторонами 38, 30 и 10
Найти высоту треугольника со сторонами 58, 53 и 29
Найти высоту треугольника со сторонами 137, 121 и 103
Найти высоту треугольника со сторонами 94, 85 и 37
Найти высоту треугольника со сторонами 76, 68 и 23
Найти высоту треугольника со сторонами 38, 30 и 10
Найти высоту треугольника со сторонами 58, 53 и 29
Найти высоту треугольника со сторонами 137, 121 и 103
Найти высоту треугольника со сторонами 94, 85 и 37
Найти высоту треугольника со сторонами 76, 68 и 23