Рассчитать высоту треугольника со сторонами 123, 104 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 104 + 57}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-123)(142-104)(142-57)}}{104}\normalsize = 56.7699995}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-123)(142-104)(142-57)}}{123}\normalsize = 48.00065}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-123)(142-104)(142-57)}}{57}\normalsize = 103.58035}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 104 и 57 равна 56.7699995
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 104 и 57 равна 48.00065
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 104 и 57 равна 103.58035
Ссылка на результат
?n1=123&n2=104&n3=57
Найти высоту треугольника со сторонами 65, 58 и 32
Найти высоту треугольника со сторонами 95, 90 и 41
Найти высоту треугольника со сторонами 138, 102 и 46
Найти высоту треугольника со сторонами 93, 91 и 4
Найти высоту треугольника со сторонами 80, 58 и 43
Найти высоту треугольника со сторонами 95, 85 и 43
Найти высоту треугольника со сторонами 95, 90 и 41
Найти высоту треугольника со сторонами 138, 102 и 46
Найти высоту треугольника со сторонами 93, 91 и 4
Найти высоту треугольника со сторонами 80, 58 и 43
Найти высоту треугольника со сторонами 95, 85 и 43