Рассчитать высоту треугольника со сторонами 123, 105 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 105 + 89}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-123)(158.5-105)(158.5-89)}}{105}\normalsize = 87.1241993}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-123)(158.5-105)(158.5-89)}}{123}\normalsize = 74.3743165}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-123)(158.5-105)(158.5-89)}}{89}\normalsize = 102.786977}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 105 и 89 равна 87.1241993
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 105 и 89 равна 74.3743165
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 105 и 89 равна 102.786977
Ссылка на результат
?n1=123&n2=105&n3=89
Найти высоту треугольника со сторонами 115, 109 и 65
Найти высоту треугольника со сторонами 150, 137 и 81
Найти высоту треугольника со сторонами 96, 92 и 11
Найти высоту треугольника со сторонами 76, 66 и 28
Найти высоту треугольника со сторонами 64, 49 и 24
Найти высоту треугольника со сторонами 100, 79 и 28
Найти высоту треугольника со сторонами 150, 137 и 81
Найти высоту треугольника со сторонами 96, 92 и 11
Найти высоту треугольника со сторонами 76, 66 и 28
Найти высоту треугольника со сторонами 64, 49 и 24
Найти высоту треугольника со сторонами 100, 79 и 28