Рассчитать высоту треугольника со сторонами 123, 106 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 106 + 30}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-123)(129.5-106)(129.5-30)}}{106}\normalsize = 26.4704402}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-123)(129.5-106)(129.5-30)}}{123}\normalsize = 22.8119241}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-123)(129.5-106)(129.5-30)}}{30}\normalsize = 93.5288889}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 106 и 30 равна 26.4704402
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 106 и 30 равна 22.8119241
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 106 и 30 равна 93.5288889
Ссылка на результат
?n1=123&n2=106&n3=30
Найти высоту треугольника со сторонами 46, 44 и 22
Найти высоту треугольника со сторонами 150, 106 и 57
Найти высоту треугольника со сторонами 76, 52 и 35
Найти высоту треугольника со сторонами 135, 131 и 18
Найти высоту треугольника со сторонами 57, 57 и 38
Найти высоту треугольника со сторонами 113, 67 и 52
Найти высоту треугольника со сторонами 150, 106 и 57
Найти высоту треугольника со сторонами 76, 52 и 35
Найти высоту треугольника со сторонами 135, 131 и 18
Найти высоту треугольника со сторонами 57, 57 и 38
Найти высоту треугольника со сторонами 113, 67 и 52