Рассчитать высоту треугольника со сторонами 123, 106 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 106 + 45}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-123)(137-106)(137-45)}}{106}\normalsize = 44.1289092}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-123)(137-106)(137-45)}}{123}\normalsize = 38.0297917}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-123)(137-106)(137-45)}}{45}\normalsize = 103.948097}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 106 и 45 равна 44.1289092
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 106 и 45 равна 38.0297917
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 106 и 45 равна 103.948097
Ссылка на результат
?n1=123&n2=106&n3=45
Найти высоту треугольника со сторонами 146, 144 и 56
Найти высоту треугольника со сторонами 136, 107 и 66
Найти высоту треугольника со сторонами 132, 118 и 71
Найти высоту треугольника со сторонами 143, 135 и 70
Найти высоту треугольника со сторонами 132, 118 и 34
Найти высоту треугольника со сторонами 135, 91 и 85
Найти высоту треугольника со сторонами 136, 107 и 66
Найти высоту треугольника со сторонами 132, 118 и 71
Найти высоту треугольника со сторонами 143, 135 и 70
Найти высоту треугольника со сторонами 132, 118 и 34
Найти высоту треугольника со сторонами 135, 91 и 85