Рассчитать высоту треугольника со сторонами 123, 106 и 70

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 106 + 70}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-123)(149.5-106)(149.5-70)}}{106}\normalsize = 69.8386533}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-123)(149.5-106)(149.5-70)}}{123}\normalsize = 60.1861565}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-123)(149.5-106)(149.5-70)}}{70}\normalsize = 105.755675}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 106 и 70 равна 69.8386533
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 106 и 70 равна 60.1861565
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 106 и 70 равна 105.755675
Ссылка на результат
?n1=123&n2=106&n3=70