Рассчитать высоту треугольника со сторонами 123, 108 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 108 + 102}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-123)(166.5-108)(166.5-102)}}{108}\normalsize = 96.8090098}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-123)(166.5-108)(166.5-102)}}{123}\normalsize = 85.003033}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-123)(166.5-108)(166.5-102)}}{102}\normalsize = 102.503657}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 108 и 102 равна 96.8090098
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 108 и 102 равна 85.003033
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 108 и 102 равна 102.503657
Ссылка на результат
?n1=123&n2=108&n3=102
Найти высоту треугольника со сторонами 127, 125 и 31
Найти высоту треугольника со сторонами 128, 126 и 123
Найти высоту треугольника со сторонами 64, 42 и 32
Найти высоту треугольника со сторонами 139, 119 и 71
Найти высоту треугольника со сторонами 113, 94 и 31
Найти высоту треугольника со сторонами 135, 109 и 59
Найти высоту треугольника со сторонами 128, 126 и 123
Найти высоту треугольника со сторонами 64, 42 и 32
Найти высоту треугольника со сторонами 139, 119 и 71
Найти высоту треугольника со сторонами 113, 94 и 31
Найти высоту треугольника со сторонами 135, 109 и 59