Рассчитать высоту треугольника со сторонами 123, 108 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 108 + 64}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-123)(147.5-108)(147.5-64)}}{108}\normalsize = 63.9332936}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-123)(147.5-108)(147.5-64)}}{123}\normalsize = 56.1365505}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-123)(147.5-108)(147.5-64)}}{64}\normalsize = 107.887433}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 108 и 64 равна 63.9332936
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 108 и 64 равна 56.1365505
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 108 и 64 равна 107.887433
Ссылка на результат
?n1=123&n2=108&n3=64
Найти высоту треугольника со сторонами 117, 117 и 39
Найти высоту треугольника со сторонами 89, 55 и 50
Найти высоту треугольника со сторонами 91, 82 и 57
Найти высоту треугольника со сторонами 72, 71 и 25
Найти высоту треугольника со сторонами 93, 79 и 74
Найти высоту треугольника со сторонами 114, 98 и 47
Найти высоту треугольника со сторонами 89, 55 и 50
Найти высоту треугольника со сторонами 91, 82 и 57
Найти высоту треугольника со сторонами 72, 71 и 25
Найти высоту треугольника со сторонами 93, 79 и 74
Найти высоту треугольника со сторонами 114, 98 и 47