Рассчитать высоту треугольника со сторонами 123, 109 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 109 + 109}{2}} \normalsize = 170.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170.5(170.5-123)(170.5-109)(170.5-109)}}{109}\normalsize = 101.551796}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170.5(170.5-123)(170.5-109)(170.5-109)}}{123}\normalsize = 89.9930553}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170.5(170.5-123)(170.5-109)(170.5-109)}}{109}\normalsize = 101.551796}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 109 и 109 равна 101.551796
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 109 и 109 равна 89.9930553
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 109 и 109 равна 101.551796
Ссылка на результат
?n1=123&n2=109&n3=109
Найти высоту треугольника со сторонами 147, 134 и 50
Найти высоту треугольника со сторонами 125, 111 и 94
Найти высоту треугольника со сторонами 148, 113 и 101
Найти высоту треугольника со сторонами 81, 63 и 20
Найти высоту треугольника со сторонами 132, 108 и 99
Найти высоту треугольника со сторонами 104, 70 и 47
Найти высоту треугольника со сторонами 125, 111 и 94
Найти высоту треугольника со сторонами 148, 113 и 101
Найти высоту треугольника со сторонами 81, 63 и 20
Найти высоту треугольника со сторонами 132, 108 и 99
Найти высоту треугольника со сторонами 104, 70 и 47