Рассчитать высоту треугольника со сторонами 123, 109 и 76

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 109 + 76}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-123)(154-109)(154-76)}}{109}\normalsize = 75.1100867}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-123)(154-109)(154-76)}}{123}\normalsize = 66.5609711}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-123)(154-109)(154-76)}}{76}\normalsize = 107.723677}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 109 и 76 равна 75.1100867
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 109 и 76 равна 66.5609711
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 109 и 76 равна 107.723677
Ссылка на результат
?n1=123&n2=109&n3=76