Рассчитать высоту треугольника со сторонами 123, 112 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 112 + 19}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-123)(127-112)(127-19)}}{112}\normalsize = 16.1994898}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-123)(127-112)(127-19)}}{123}\normalsize = 14.7507549}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-123)(127-112)(127-19)}}{19}\normalsize = 95.4917293}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 112 и 19 равна 16.1994898
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 112 и 19 равна 14.7507549
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 112 и 19 равна 95.4917293
Ссылка на результат
?n1=123&n2=112&n3=19
Найти высоту треугольника со сторонами 50, 38 и 26
Найти высоту треугольника со сторонами 128, 96 и 67
Найти высоту треугольника со сторонами 123, 123 и 60
Найти высоту треугольника со сторонами 127, 101 и 28
Найти высоту треугольника со сторонами 149, 134 и 66
Найти высоту треугольника со сторонами 46, 40 и 28
Найти высоту треугольника со сторонами 128, 96 и 67
Найти высоту треугольника со сторонами 123, 123 и 60
Найти высоту треугольника со сторонами 127, 101 и 28
Найти высоту треугольника со сторонами 149, 134 и 66
Найти высоту треугольника со сторонами 46, 40 и 28