Рассчитать высоту треугольника со сторонами 123, 113 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 113 + 59}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-123)(147.5-113)(147.5-59)}}{113}\normalsize = 58.7911273}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-123)(147.5-113)(147.5-59)}}{123}\normalsize = 54.0113608}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-123)(147.5-113)(147.5-59)}}{59}\normalsize = 112.599956}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 113 и 59 равна 58.7911273
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 113 и 59 равна 54.0113608
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 113 и 59 равна 112.599956
Ссылка на результат
?n1=123&n2=113&n3=59
Найти высоту треугольника со сторонами 122, 91 и 75
Найти высоту треугольника со сторонами 28, 23 и 15
Найти высоту треугольника со сторонами 102, 85 и 19
Найти высоту треугольника со сторонами 110, 97 и 28
Найти высоту треугольника со сторонами 139, 124 и 114
Найти высоту треугольника со сторонами 120, 97 и 62
Найти высоту треугольника со сторонами 28, 23 и 15
Найти высоту треугольника со сторонами 102, 85 и 19
Найти высоту треугольника со сторонами 110, 97 и 28
Найти высоту треугольника со сторонами 139, 124 и 114
Найти высоту треугольника со сторонами 120, 97 и 62