Рассчитать высоту треугольника со сторонами 123, 116 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 116 + 51}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-123)(145-116)(145-51)}}{116}\normalsize = 50.8428953}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-123)(145-116)(145-51)}}{123}\normalsize = 47.9493972}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-123)(145-116)(145-51)}}{51}\normalsize = 115.642664}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 116 и 51 равна 50.8428953
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 116 и 51 равна 47.9493972
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 116 и 51 равна 115.642664
Ссылка на результат
?n1=123&n2=116&n3=51
Найти высоту треугольника со сторонами 135, 126 и 115
Найти высоту треугольника со сторонами 104, 85 и 25
Найти высоту треугольника со сторонами 70, 37 и 37
Найти высоту треугольника со сторонами 130, 100 и 93
Найти высоту треугольника со сторонами 130, 111 и 72
Найти высоту треугольника со сторонами 74, 67 и 36
Найти высоту треугольника со сторонами 104, 85 и 25
Найти высоту треугольника со сторонами 70, 37 и 37
Найти высоту треугольника со сторонами 130, 100 и 93
Найти высоту треугольника со сторонами 130, 111 и 72
Найти высоту треугольника со сторонами 74, 67 и 36