Рассчитать высоту треугольника со сторонами 123, 117 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 117 + 65}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-123)(152.5-117)(152.5-65)}}{117}\normalsize = 63.9010901}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-123)(152.5-117)(152.5-65)}}{123}\normalsize = 60.7839637}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-123)(152.5-117)(152.5-65)}}{65}\normalsize = 115.021962}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 117 и 65 равна 63.9010901
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 117 и 65 равна 60.7839637
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 117 и 65 равна 115.021962
Ссылка на результат
?n1=123&n2=117&n3=65
Найти высоту треугольника со сторонами 141, 109 и 37
Найти высоту треугольника со сторонами 135, 130 и 107
Найти высоту треугольника со сторонами 145, 130 и 28
Найти высоту треугольника со сторонами 99, 92 и 86
Найти высоту треугольника со сторонами 54, 48 и 22
Найти высоту треугольника со сторонами 67, 40 и 29
Найти высоту треугольника со сторонами 135, 130 и 107
Найти высоту треугольника со сторонами 145, 130 и 28
Найти высоту треугольника со сторонами 99, 92 и 86
Найти высоту треугольника со сторонами 54, 48 и 22
Найти высоту треугольника со сторонами 67, 40 и 29