Рассчитать высоту треугольника со сторонами 123, 118 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 118 + 40}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-123)(140.5-118)(140.5-40)}}{118}\normalsize = 39.9649676}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-123)(140.5-118)(140.5-40)}}{123}\normalsize = 38.3403754}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-123)(140.5-118)(140.5-40)}}{40}\normalsize = 117.896654}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 118 и 40 равна 39.9649676
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 118 и 40 равна 38.3403754
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 118 и 40 равна 117.896654
Ссылка на результат
?n1=123&n2=118&n3=40
Найти высоту треугольника со сторонами 90, 80 и 11
Найти высоту треугольника со сторонами 118, 80 и 52
Найти высоту треугольника со сторонами 112, 111 и 111
Найти высоту треугольника со сторонами 138, 126 и 79
Найти высоту треугольника со сторонами 43, 37 и 32
Найти высоту треугольника со сторонами 140, 134 и 86
Найти высоту треугольника со сторонами 118, 80 и 52
Найти высоту треугольника со сторонами 112, 111 и 111
Найти высоту треугольника со сторонами 138, 126 и 79
Найти высоту треугольника со сторонами 43, 37 и 32
Найти высоту треугольника со сторонами 140, 134 и 86