Рассчитать высоту треугольника со сторонами 123, 118 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 118 + 6}{2}} \normalsize = 123.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123.5(123.5-123)(123.5-118)(123.5-6)}}{118}\normalsize = 3.38584246}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123.5(123.5-123)(123.5-118)(123.5-6)}}{123}\normalsize = 3.24820659}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123.5(123.5-123)(123.5-118)(123.5-6)}}{6}\normalsize = 66.5882351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 118 и 6 равна 3.38584246
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 118 и 6 равна 3.24820659
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 118 и 6 равна 66.5882351
Ссылка на результат
?n1=123&n2=118&n3=6
Найти высоту треугольника со сторонами 129, 95 и 70
Найти высоту треугольника со сторонами 133, 120 и 113
Найти высоту треугольника со сторонами 91, 80 и 21
Найти высоту треугольника со сторонами 64, 54 и 27
Найти высоту треугольника со сторонами 146, 138 и 79
Найти высоту треугольника со сторонами 119, 117 и 31
Найти высоту треугольника со сторонами 133, 120 и 113
Найти высоту треугольника со сторонами 91, 80 и 21
Найти высоту треугольника со сторонами 64, 54 и 27
Найти высоту треугольника со сторонами 146, 138 и 79
Найти высоту треугольника со сторонами 119, 117 и 31