Рассчитать высоту треугольника со сторонами 123, 118 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 118 + 90}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-123)(165.5-118)(165.5-90)}}{118}\normalsize = 85.1259032}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-123)(165.5-118)(165.5-90)}}{123}\normalsize = 81.6655007}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-123)(165.5-118)(165.5-90)}}{90}\normalsize = 111.609518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 118 и 90 равна 85.1259032
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 118 и 90 равна 81.6655007
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 118 и 90 равна 111.609518
Ссылка на результат
?n1=123&n2=118&n3=90
Найти высоту треугольника со сторонами 145, 82 и 78
Найти высоту треугольника со сторонами 56, 42 и 33
Найти высоту треугольника со сторонами 100, 73 и 61
Найти высоту треугольника со сторонами 141, 139 и 70
Найти высоту треугольника со сторонами 124, 107 и 72
Найти высоту треугольника со сторонами 112, 90 и 86
Найти высоту треугольника со сторонами 56, 42 и 33
Найти высоту треугольника со сторонами 100, 73 и 61
Найти высоту треугольника со сторонами 141, 139 и 70
Найти высоту треугольника со сторонами 124, 107 и 72
Найти высоту треугольника со сторонами 112, 90 и 86