Рассчитать высоту треугольника со сторонами 123, 119 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 119 + 9}{2}} \normalsize = 125.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125.5(125.5-123)(125.5-119)(125.5-9)}}{119}\normalsize = 8.19208675}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125.5(125.5-123)(125.5-119)(125.5-9)}}{123}\normalsize = 7.92567742}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125.5(125.5-123)(125.5-119)(125.5-9)}}{9}\normalsize = 108.317591}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 119 и 9 равна 8.19208675
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 119 и 9 равна 7.92567742
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 119 и 9 равна 108.317591
Ссылка на результат
?n1=123&n2=119&n3=9
Найти высоту треугольника со сторонами 87, 84 и 80
Найти высоту треугольника со сторонами 72, 72 и 63
Найти высоту треугольника со сторонами 143, 133 и 85
Найти высоту треугольника со сторонами 109, 97 и 96
Найти высоту треугольника со сторонами 140, 117 и 59
Найти высоту треугольника со сторонами 116, 113 и 37
Найти высоту треугольника со сторонами 72, 72 и 63
Найти высоту треугольника со сторонами 143, 133 и 85
Найти высоту треугольника со сторонами 109, 97 и 96
Найти высоту треугольника со сторонами 140, 117 и 59
Найти высоту треугольника со сторонами 116, 113 и 37