Рассчитать высоту треугольника со сторонами 123, 120 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 120 + 104}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-123)(173.5-120)(173.5-104)}}{120}\normalsize = 95.1291183}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-123)(173.5-120)(173.5-104)}}{123}\normalsize = 92.8088959}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-123)(173.5-120)(173.5-104)}}{104}\normalsize = 109.764367}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 120 и 104 равна 95.1291183
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 120 и 104 равна 92.8088959
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 120 и 104 равна 109.764367
Ссылка на результат
?n1=123&n2=120&n3=104
Найти высоту треугольника со сторонами 137, 136 и 51
Найти высоту треугольника со сторонами 115, 114 и 4
Найти высоту треугольника со сторонами 57, 54 и 53
Найти высоту треугольника со сторонами 86, 53 и 51
Найти высоту треугольника со сторонами 103, 85 и 71
Найти высоту треугольника со сторонами 119, 92 и 30
Найти высоту треугольника со сторонами 115, 114 и 4
Найти высоту треугольника со сторонами 57, 54 и 53
Найти высоту треугольника со сторонами 86, 53 и 51
Найти высоту треугольника со сторонами 103, 85 и 71
Найти высоту треугольника со сторонами 119, 92 и 30