Рассчитать высоту треугольника со сторонами 123, 121 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 121 + 30}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-123)(137-121)(137-30)}}{121}\normalsize = 29.9516538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-123)(137-121)(137-30)}}{123}\normalsize = 29.464635}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-123)(137-121)(137-30)}}{30}\normalsize = 120.805004}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 121 и 30 равна 29.9516538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 121 и 30 равна 29.464635
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 121 и 30 равна 120.805004
Ссылка на результат
?n1=123&n2=121&n3=30
Найти высоту треугольника со сторонами 134, 94 и 52
Найти высоту треугольника со сторонами 145, 114 и 57
Найти высоту треугольника со сторонами 72, 56 и 34
Найти высоту треугольника со сторонами 61, 58 и 9
Найти высоту треугольника со сторонами 118, 91 и 74
Найти высоту треугольника со сторонами 81, 75 и 31
Найти высоту треугольника со сторонами 145, 114 и 57
Найти высоту треугольника со сторонами 72, 56 и 34
Найти высоту треугольника со сторонами 61, 58 и 9
Найти высоту треугольника со сторонами 118, 91 и 74
Найти высоту треугольника со сторонами 81, 75 и 31