Рассчитать высоту треугольника со сторонами 123, 122 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 122 + 90}{2}} \normalsize = 167.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167.5(167.5-123)(167.5-122)(167.5-90)}}{122}\normalsize = 84.0454343}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167.5(167.5-123)(167.5-122)(167.5-90)}}{123}\normalsize = 83.3621381}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167.5(167.5-123)(167.5-122)(167.5-90)}}{90}\normalsize = 113.928255}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 122 и 90 равна 84.0454343
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 122 и 90 равна 83.3621381
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 122 и 90 равна 113.928255
Ссылка на результат
?n1=123&n2=122&n3=90
Найти высоту треугольника со сторонами 107, 100 и 57
Найти высоту треугольника со сторонами 91, 61 и 44
Найти высоту треугольника со сторонами 125, 77 и 75
Найти высоту треугольника со сторонами 61, 52 и 42
Найти высоту треугольника со сторонами 72, 72 и 55
Найти высоту треугольника со сторонами 130, 105 и 86
Найти высоту треугольника со сторонами 91, 61 и 44
Найти высоту треугольника со сторонами 125, 77 и 75
Найти высоту треугольника со сторонами 61, 52 и 42
Найти высоту треугольника со сторонами 72, 72 и 55
Найти высоту треугольника со сторонами 130, 105 и 86