Рассчитать высоту треугольника со сторонами 123, 70 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 70 + 62}{2}} \normalsize = 127.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127.5(127.5-123)(127.5-70)(127.5-62)}}{70}\normalsize = 41.9998633}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127.5(127.5-123)(127.5-70)(127.5-62)}}{123}\normalsize = 23.9023612}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127.5(127.5-123)(127.5-70)(127.5-62)}}{62}\normalsize = 47.4192005}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 70 и 62 равна 41.9998633
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 70 и 62 равна 23.9023612
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 70 и 62 равна 47.4192005
Ссылка на результат
?n1=123&n2=70&n3=62