Рассчитать высоту треугольника со сторонами 123, 72 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 72 + 62}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-123)(128.5-72)(128.5-62)}}{72}\normalsize = 45.2653054}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-123)(128.5-72)(128.5-62)}}{123}\normalsize = 26.4967641}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-123)(128.5-72)(128.5-62)}}{62}\normalsize = 52.5661611}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 72 и 62 равна 45.2653054
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 72 и 62 равна 26.4967641
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 72 и 62 равна 52.5661611
Ссылка на результат
?n1=123&n2=72&n3=62
Найти высоту треугольника со сторонами 137, 119 и 31
Найти высоту треугольника со сторонами 95, 86 и 33
Найти высоту треугольника со сторонами 149, 91 и 80
Найти высоту треугольника со сторонами 134, 121 и 33
Найти высоту треугольника со сторонами 148, 143 и 82
Найти высоту треугольника со сторонами 125, 100 и 65
Найти высоту треугольника со сторонами 95, 86 и 33
Найти высоту треугольника со сторонами 149, 91 и 80
Найти высоту треугольника со сторонами 134, 121 и 33
Найти высоту треугольника со сторонами 148, 143 и 82
Найти высоту треугольника со сторонами 125, 100 и 65