Рассчитать высоту треугольника со сторонами 123, 74 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 74 + 59}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-123)(128-74)(128-59)}}{74}\normalsize = 41.7358909}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-123)(128-74)(128-59)}}{123}\normalsize = 25.1093978}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-123)(128-74)(128-59)}}{59}\normalsize = 52.3467106}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 74 и 59 равна 41.7358909
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 74 и 59 равна 25.1093978
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 74 и 59 равна 52.3467106
Ссылка на результат
?n1=123&n2=74&n3=59
Найти высоту треугольника со сторонами 111, 106 и 8
Найти высоту треугольника со сторонами 121, 116 и 55
Найти высоту треугольника со сторонами 65, 62 и 59
Найти высоту треугольника со сторонами 104, 101 и 62
Найти высоту треугольника со сторонами 29, 29 и 11
Найти высоту треугольника со сторонами 141, 87 и 77
Найти высоту треугольника со сторонами 121, 116 и 55
Найти высоту треугольника со сторонами 65, 62 и 59
Найти высоту треугольника со сторонами 104, 101 и 62
Найти высоту треугольника со сторонами 29, 29 и 11
Найти высоту треугольника со сторонами 141, 87 и 77