Рассчитать высоту треугольника со сторонами 123, 76 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 76 + 73}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-123)(136-76)(136-73)}}{76}\normalsize = 68.0304641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-123)(136-76)(136-73)}}{123}\normalsize = 42.0350835}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-123)(136-76)(136-73)}}{73}\normalsize = 70.8262366}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 76 и 73 равна 68.0304641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 76 и 73 равна 42.0350835
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 76 и 73 равна 70.8262366
Ссылка на результат
?n1=123&n2=76&n3=73
Найти высоту треугольника со сторонами 25, 20 и 11
Найти высоту треугольника со сторонами 95, 66 и 61
Найти высоту треугольника со сторонами 64, 57 и 53
Найти высоту треугольника со сторонами 82, 61 и 37
Найти высоту треугольника со сторонами 146, 138 и 14
Найти высоту треугольника со сторонами 144, 93 и 62
Найти высоту треугольника со сторонами 95, 66 и 61
Найти высоту треугольника со сторонами 64, 57 и 53
Найти высоту треугольника со сторонами 82, 61 и 37
Найти высоту треугольника со сторонами 146, 138 и 14
Найти высоту треугольника со сторонами 144, 93 и 62