Рассчитать высоту треугольника со сторонами 123, 81 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 81 + 80}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-123)(142-81)(142-80)}}{81}\normalsize = 78.8727007}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-123)(142-81)(142-80)}}{123}\normalsize = 51.940559}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-123)(142-81)(142-80)}}{80}\normalsize = 79.8586094}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 81 и 80 равна 78.8727007
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 81 и 80 равна 51.940559
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 81 и 80 равна 79.8586094
Ссылка на результат
?n1=123&n2=81&n3=80
Найти высоту треугольника со сторонами 129, 126 и 46
Найти высоту треугольника со сторонами 67, 34 и 34
Найти высоту треугольника со сторонами 120, 82 и 51
Найти высоту треугольника со сторонами 123, 101 и 37
Найти высоту треугольника со сторонами 80, 74 и 7
Найти высоту треугольника со сторонами 89, 64 и 57
Найти высоту треугольника со сторонами 67, 34 и 34
Найти высоту треугольника со сторонами 120, 82 и 51
Найти высоту треугольника со сторонами 123, 101 и 37
Найти высоту треугольника со сторонами 80, 74 и 7
Найти высоту треугольника со сторонами 89, 64 и 57