Рассчитать высоту треугольника со сторонами 123, 82 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 82 + 68}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-123)(136.5-82)(136.5-68)}}{82}\normalsize = 63.9724362}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-123)(136.5-82)(136.5-68)}}{123}\normalsize = 42.6482908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-123)(136.5-82)(136.5-68)}}{68}\normalsize = 77.1432319}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 82 и 68 равна 63.9724362
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 82 и 68 равна 42.6482908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 82 и 68 равна 77.1432319
Ссылка на результат
?n1=123&n2=82&n3=68
Найти высоту треугольника со сторонами 111, 107 и 78
Найти высоту треугольника со сторонами 76, 58 и 19
Найти высоту треугольника со сторонами 94, 81 и 31
Найти высоту треугольника со сторонами 147, 143 и 41
Найти высоту треугольника со сторонами 127, 125 и 83
Найти высоту треугольника со сторонами 131, 128 и 81
Найти высоту треугольника со сторонами 76, 58 и 19
Найти высоту треугольника со сторонами 94, 81 и 31
Найти высоту треугольника со сторонами 147, 143 и 41
Найти высоту треугольника со сторонами 127, 125 и 83
Найти высоту треугольника со сторонами 131, 128 и 81