Рассчитать высоту треугольника со сторонами 123, 82 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 82 + 79}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-123)(142-82)(142-79)}}{82}\normalsize = 77.8902353}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-123)(142-82)(142-79)}}{123}\normalsize = 51.9268235}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-123)(142-82)(142-79)}}{79}\normalsize = 80.8480923}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 82 и 79 равна 77.8902353
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 82 и 79 равна 51.9268235
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 82 и 79 равна 80.8480923
Ссылка на результат
?n1=123&n2=82&n3=79
Найти высоту треугольника со сторонами 103, 84 и 39
Найти высоту треугольника со сторонами 130, 123 и 75
Найти высоту треугольника со сторонами 135, 135 и 85
Найти высоту треугольника со сторонами 94, 63 и 60
Найти высоту треугольника со сторонами 33, 29 и 29
Найти высоту треугольника со сторонами 142, 131 и 86
Найти высоту треугольника со сторонами 130, 123 и 75
Найти высоту треугольника со сторонами 135, 135 и 85
Найти высоту треугольника со сторонами 94, 63 и 60
Найти высоту треугольника со сторонами 33, 29 и 29
Найти высоту треугольника со сторонами 142, 131 и 86