Рассчитать высоту треугольника со сторонами 123, 84 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 84 + 57}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-123)(132-84)(132-57)}}{84}\normalsize = 49.2391084}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-123)(132-84)(132-57)}}{123}\normalsize = 33.6267082}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-123)(132-84)(132-57)}}{57}\normalsize = 72.5628966}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 84 и 57 равна 49.2391084
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 84 и 57 равна 33.6267082
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 84 и 57 равна 72.5628966
Ссылка на результат
?n1=123&n2=84&n3=57
Найти высоту треугольника со сторонами 52, 37 и 16
Найти высоту треугольника со сторонами 132, 131 и 72
Найти высоту треугольника со сторонами 147, 143 и 53
Найти высоту треугольника со сторонами 99, 79 и 46
Найти высоту треугольника со сторонами 122, 69 и 65
Найти высоту треугольника со сторонами 147, 131 и 116
Найти высоту треугольника со сторонами 132, 131 и 72
Найти высоту треугольника со сторонами 147, 143 и 53
Найти высоту треугольника со сторонами 99, 79 и 46
Найти высоту треугольника со сторонами 122, 69 и 65
Найти высоту треугольника со сторонами 147, 131 и 116