Рассчитать высоту треугольника со сторонами 123, 86 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 86 + 63}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-123)(136-86)(136-63)}}{86}\normalsize = 59.0770917}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-123)(136-86)(136-63)}}{123}\normalsize = 41.305934}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-123)(136-86)(136-63)}}{63}\normalsize = 80.6449188}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 86 и 63 равна 59.0770917
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 86 и 63 равна 41.305934
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 86 и 63 равна 80.6449188
Ссылка на результат
?n1=123&n2=86&n3=63
Найти высоту треугольника со сторонами 130, 99 и 53
Найти высоту треугольника со сторонами 131, 96 и 40
Найти высоту треугольника со сторонами 93, 65 и 59
Найти высоту треугольника со сторонами 133, 102 и 77
Найти высоту треугольника со сторонами 144, 136 и 57
Найти высоту треугольника со сторонами 99, 95 и 25
Найти высоту треугольника со сторонами 131, 96 и 40
Найти высоту треугольника со сторонами 93, 65 и 59
Найти высоту треугольника со сторонами 133, 102 и 77
Найти высоту треугольника со сторонами 144, 136 и 57
Найти высоту треугольника со сторонами 99, 95 и 25