Рассчитать высоту треугольника со сторонами 123, 93 и 89

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 93 + 89}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-123)(152.5-93)(152.5-89)}}{93}\normalsize = 88.6621631}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-123)(152.5-93)(152.5-89)}}{123}\normalsize = 67.0372452}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-123)(152.5-93)(152.5-89)}}{89}\normalsize = 92.6469794}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 93 и 89 равна 88.6621631
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 93 и 89 равна 67.0372452
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 93 и 89 равна 92.6469794
Ссылка на результат
?n1=123&n2=93&n3=89