Рассчитать высоту треугольника со сторонами 123, 94 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 94 + 51}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-123)(134-94)(134-51)}}{94}\normalsize = 47.0673693}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-123)(134-94)(134-51)}}{123}\normalsize = 35.9701847}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-123)(134-94)(134-51)}}{51}\normalsize = 86.7516219}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 94 и 51 равна 47.0673693
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 94 и 51 равна 35.9701847
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 94 и 51 равна 86.7516219
Ссылка на результат
?n1=123&n2=94&n3=51
Найти высоту треугольника со сторонами 129, 127 и 103
Найти высоту треугольника со сторонами 138, 130 и 102
Найти высоту треугольника со сторонами 143, 103 и 61
Найти высоту треугольника со сторонами 119, 92 и 38
Найти высоту треугольника со сторонами 88, 58 и 36
Найти высоту треугольника со сторонами 126, 116 и 86
Найти высоту треугольника со сторонами 138, 130 и 102
Найти высоту треугольника со сторонами 143, 103 и 61
Найти высоту треугольника со сторонами 119, 92 и 38
Найти высоту треугольника со сторонами 88, 58 и 36
Найти высоту треугольника со сторонами 126, 116 и 86