Рассчитать высоту треугольника со сторонами 123, 95 и 94
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 95 + 94}{2}} \normalsize = 156}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{156(156-123)(156-95)(156-94)}}{95}\normalsize = 92.8937343}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{156(156-123)(156-95)(156-94)}}{123}\normalsize = 71.7471932}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{156(156-123)(156-95)(156-94)}}{94}\normalsize = 93.8819655}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 95 и 94 равна 92.8937343
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 95 и 94 равна 71.7471932
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 95 и 94 равна 93.8819655
Ссылка на результат
?n1=123&n2=95&n3=94
Найти высоту треугольника со сторонами 138, 102 и 95
Найти высоту треугольника со сторонами 99, 85 и 71
Найти высоту треугольника со сторонами 101, 73 и 57
Найти высоту треугольника со сторонами 106, 88 и 38
Найти высоту треугольника со сторонами 111, 81 и 78
Найти высоту треугольника со сторонами 86, 82 и 46
Найти высоту треугольника со сторонами 99, 85 и 71
Найти высоту треугольника со сторонами 101, 73 и 57
Найти высоту треугольника со сторонами 106, 88 и 38
Найти высоту треугольника со сторонами 111, 81 и 78
Найти высоту треугольника со сторонами 86, 82 и 46