Рассчитать высоту треугольника со сторонами 123, 96 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 96 + 74}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-123)(146.5-96)(146.5-74)}}{96}\normalsize = 73.9649892}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-123)(146.5-96)(146.5-74)}}{123}\normalsize = 57.7287721}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-123)(146.5-96)(146.5-74)}}{74}\normalsize = 95.9545806}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 96 и 74 равна 73.9649892
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 96 и 74 равна 57.7287721
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 96 и 74 равна 95.9545806
Ссылка на результат
?n1=123&n2=96&n3=74
Найти высоту треугольника со сторонами 100, 73 и 36
Найти высоту треугольника со сторонами 139, 130 и 112
Найти высоту треугольника со сторонами 91, 75 и 37
Найти высоту треугольника со сторонами 57, 54 и 8
Найти высоту треугольника со сторонами 81, 67 и 66
Найти высоту треугольника со сторонами 119, 89 и 42
Найти высоту треугольника со сторонами 139, 130 и 112
Найти высоту треугольника со сторонами 91, 75 и 37
Найти высоту треугольника со сторонами 57, 54 и 8
Найти высоту треугольника со сторонами 81, 67 и 66
Найти высоту треугольника со сторонами 119, 89 и 42