Рассчитать высоту треугольника со сторонами 123, 98 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{123 + 98 + 83}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-123)(152-98)(152-83)}}{98}\normalsize = 82.707737}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-123)(152-98)(152-83)}}{123}\normalsize = 65.8972214}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-123)(152-98)(152-83)}}{83}\normalsize = 97.6549184}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 123, 98 и 83 равна 82.707737
Высота треугольника опущенная с вершины A на сторону BC со сторонами 123, 98 и 83 равна 65.8972214
Высота треугольника опущенная с вершины C на сторону AB со сторонами 123, 98 и 83 равна 97.6549184
Ссылка на результат
?n1=123&n2=98&n3=83
Найти высоту треугольника со сторонами 147, 122 и 113
Найти высоту треугольника со сторонами 86, 79 и 35
Найти высоту треугольника со сторонами 82, 69 и 32
Найти высоту треугольника со сторонами 45, 36 и 23
Найти высоту треугольника со сторонами 119, 80 и 67
Найти высоту треугольника со сторонами 97, 82 и 50
Найти высоту треугольника со сторонами 86, 79 и 35
Найти высоту треугольника со сторонами 82, 69 и 32
Найти высоту треугольника со сторонами 45, 36 и 23
Найти высоту треугольника со сторонами 119, 80 и 67
Найти высоту треугольника со сторонами 97, 82 и 50